
Burned Area Emergency Response - Erosion Estimates

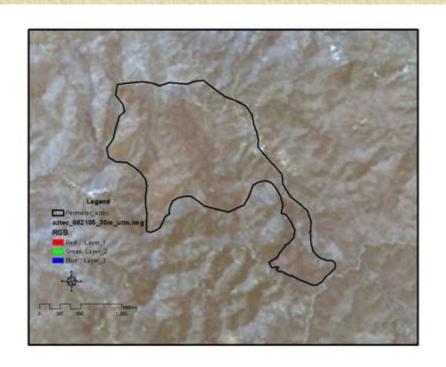
** Once the fire has cooled...

** Then what?

BAER Team Assessment

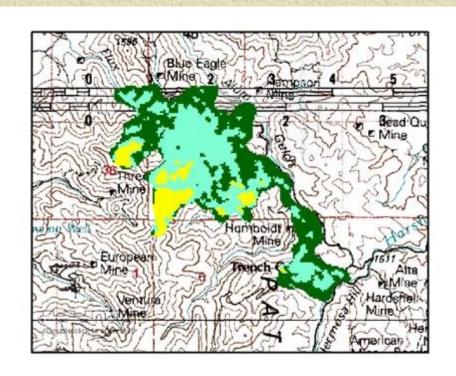
- **O**Hydrologists
- **OSoil Scientists**
- Recreation Specialists
 - WildlifeBiologists
- **Archeologists**

- **B**urned **A**rea **E**mergency **R**esponse Team
- * A group of resource specialists who assess the damage to Values at Risk.

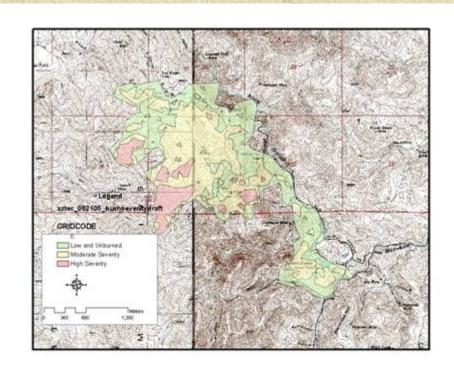


- ## High Fire Severity- areas are characterized by complete consumption of both canopy and ground fuels. Black to white ash is 1 to 3 inches thick and minimally effective as ground cover. Water repellent soils are present. Experience shows that, regardless of the degree of water repellency, areas such as the Southwest that have short duration, high intensity storms will produce extreme runoff events if most of the vegetative cover has been removed.
- **Moderate Fire Severity- areas are characterized by partial consumption of both canopy and ground fuels. The conifers in the canopy contain mostly scorched needles. Ash color is mostly gray with needle structure intact in places. Ash depth is 2 to 3 inches.
- ** Low Fire Severity- areas are characterized by incomplete consumption of both canopy and ground fuels and contain adequate effective ground cover. The over story is mostly green with limited scorch. The litter layer is scorched with black ash retaining the structure of needles and leaves. The depth of ash is 1 to 2 inches with the litter intact below it.

Adapted from: Fire Effects on Ecosystems (1998) by Leonard DeBano, Dan Neary, and Pete Ffolliot)



- *A satellite image is acquired, if available.
- ****** With interpretation, it becomes very useful


Burned Area Map

The interpreted satellite image is used with field and aerial reconnaissance to verify the interpretations.

Burned Area Map

We using satellite imagery, aerial reconnaissance, and field trips, a map of the fire identifying areas of high, moderate, and low burn severity is developed.

Once the map is completed:

- 💥 Develop data
- ** Acres of each burn severity level
- Slope Classes of acres burned at each severity level

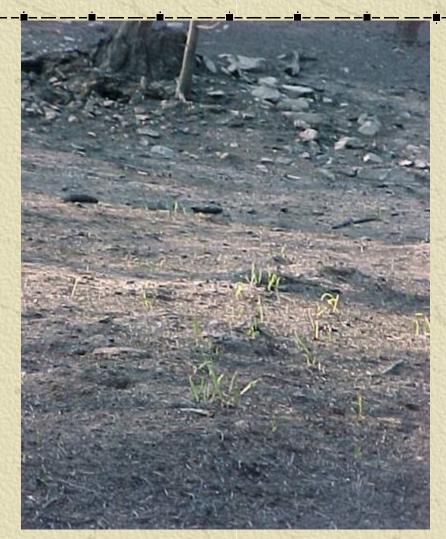
	GES MAP UNIT	avg slope, %	Veg Comp.	acres low sev.	acres mod. sev.	acres high sev.
	ASPEN					
100	452	60	Psmeg	178.0	1322	2018
	476	60	Quem/Psmeg	311.0	6107	11757
	235	60	Cemi2	713.0	539	75
	475	60	Fosp2/Quem	316.0	22621	13831
	303	60	Fosp2/Qutu2	14142.0	3490	4988
	490	25	Prgl2/Quem	0.0	43	439

Models for Estimating Erosion

Wildland Erosion Prediction Project (WEPP)

Preburn	Total acres	Average Erosion rate tons/acre	Total Erosion Rate	Total sediment yield
Sediment Delivery Ratio 0.62	90	3.815	162.9	100.998
Post Fire	Total acres	Average Erosion rate	Total Erosion Rate	Total sediment yield
Sediment Delivery Ratio	90	13.620889	1225.88	760.0456
0.62				

Coronado National Forest

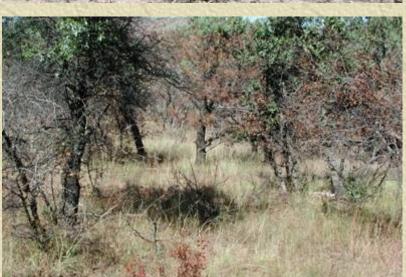

Universal Soil Loss Equation (USLE)

							Totals
103 Fire USLE Post I							
Soil Code		flat	steep low	steep mod	steep high		
USLE Erosion	t/a/yr	1.476956	15.87939	42.13349	43.23848	0	9.709652
USLE Erosion	in/ac/yr	0.008951	0.096239	0.255354	0.262051	0	
Soil Erosion	tons/yr	1260.76	2302.512	1316.672	302.6693	0	5182.612
Sediment delivery ratio		0.2	0.2	0.2	0.2	0.2	
Sediment yield	t/yr	252.1519	460.5024	263.3343	60.53387	0	1036.522

Coronado National Forest

Objectives of Proposed Treatments

- stabilize soil
- control water, sediment and debris movement
- minimize impairment of ecosystems.



Coronado National Forest

Monitor the Treatments

6/17/2002

- Monitor to make sure these emergency treatments were implemented correctly
- Monitor the effectiveness of these emergency treatments

10/25/2002

Long Term Recovery

- The public is concerned about their Forest
- ** Long Term recovery will continue to be of great interest.

Carr Fire Photo Point 3 9/1999

Coronado National Forest